Skip to main content

Post-classification change detection with data from different sensors: some accuracy considerations

Buy Article:

$60.90 plus tax (Refund Policy)


Change detection from remote sensing data is often done by simple overlay of classified maps. However, such analyses can contain a significant proportion of boundary errors, especially when combining data from different sensors. This paper presents a protocol that allows reliable post-classification comparisons by taking into account classification accuracies, landscape fragmentation, planimetric accuracies, pixel sizes and grid origins. The proposed protocol has been applied, with little extra effort, in a fragmented agricultural Mediterranean zone using MSS (1970s) and TM (1990s) images. Applying the protocol, change detection had an accuracy of 85.1%, while for a direct overlay it was only 43.9% accurate. The drawback of this method is that it reduces the useful area of comparison. As the accuracy of individual classifications is critical, the paper also describes and tests a hybrid classifier that combines an unsupervised classification approach with training areas. This approach has proved more successful than maximum likelihood classifiers.

Document Type: Research Article


Affiliations: Departament de Geografia, Edifici B, Universitat Autònoma de Barcelona 08193 Bellaterra, Spain

Publication date: August 1, 2003

More about this publication?

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Partial Open Access Content
Partial Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more