Skip to main content

A stepwise regression tree for nonlinear approximation: applications to estimating subpixel land cover

Buy Article:

$63.00 plus tax (Refund Policy)

Abstract:

A stepwise regression tree (SRT) algorithm was developed for approximating complex nonlinear relationships. Based on the regression tree of Breiman et al. (BRT) and a stepwise linear regression (SLR) method, this algorithm represents an improvement over SLR in that it can approximate nonlinear relationships and over BRT in that it gives more realistic predictions. The applicability of this method to estimating subpixel forest was demonstrated using three test data sets, on all of which it gave more accurate predictions than SLR and BRT. SRT also generated more compact trees and performed better than or at least as well as BRT at all 10 equal forest proportion interval ranging from 0 to 100%. This method is appealing to estimating subpixel land cover over large areas.

Document Type: Research Article

DOI: https://doi.org/10.1080/01431160305001

Affiliations: 1: Department of Geography, University of Maryland, College Park, MD 20742, USA 2: Department of Geography and Institute for Advanced Computer Studies, University of Maryland, College Park, MD 20742, USA

Publication date: 2003-01-01

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more