Evidential reasoning with Landsat TM, DEM and GIS data for landcover classification in support of grizzly bear habitat mapping

$60.01 plus tax (Refund Policy)

Buy Article:


Multisource data consisting of satellite imagery, topographic descriptors derived from DEMs, and GIS inventory information have been used with a detailed, field-based landcover classification scheme to support a quantitative analysis of the spatial distribution and configuration of grizzly bear (Ursus arctos horribilis) habitat within the Alberta Yellowhead Ecosystem study area. The map is needed to determine if bear movement and habitat use patterns are affected by changing landscape conditions and human activities. We compared a multisource Evidential Reasoning (ER) classification algorithm, capable of handling this large and diverse data set, to a more conventional maximum likelihood decision rule which could only use a subset of the available data. The ER classifier provided an acceptable level of accuracy (ranging to 85% over 21 habitat classes) for a level 3 product, compared to 71% using a maximum likelihood classifier.

Document Type: Research Article

DOI: http://dx.doi.org/10.1080/01431160110113971

Publication date: November 20, 2002

More about this publication?
Related content

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more