Skip to main content

Mapping fire scars in global boreal forests using imaging radar data

Buy Article:

$55.00 plus tax (Refund Policy)

This study is an extension of earlier research which demonstrated the utility of ERS SAR data for detection and monitoring of fire-disturbed boreal forests of Alaska. Fire scars were mappable in Alaska due to the ecological changes that occur post-burn including increased soil moisture. High soil moisture caused a characteristic enhanced backscatter signal to be received by the ERS sensor from burned forests. Since regional ecological differences in the global boreal biome may have an effect on post-fire ecosystem changes, it may also affect how fire scars appear in C-band SAR imagery. In the current study we evaluate the use of C-band SAR data to detect, map and monitor boreal fire scars globally. Study sites include four regions of Canada and an area in central Russia. Fire boundaries were mapped from SAR data without a priori knowledge of fire scar locations. SAR-derived maps were validated with fire service records and field checks. Based on results from test areas in Northwest Territories, Ontario, southeastern Quebec, and central Russia, C-band SAR data have high potential for use in detecting and mapping fire scars globally.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: 2002-10-20

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more