If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Land surface temperature and emissivity estimation from passive sensor data: theory and practice-current trends

$61.74 plus tax (Refund Policy)

Buy Article:

Abstract:

Abstract. Land surface temperature (LST) and emissivity for large areas can only be derived from surface-leaving radiation measured by satellite sensors. These measurements represent the integrated effect of the surface and are, thus, for many applications, superior to point measurements on the ground, e.g. in Earth's radiation budget and climate change detection. Over the years, a substantial amount of research was dedicated to the estimation of LST and emissivity from passive sensor data. This article provides the theoretical basis and gives an overview of the current status of this research. Sensors operating in the visible, infrared and microwave range onboard various meteorological satellites are considered, e.g. Meteosat-MVIRI, NOAA-AVHRR, ERS-ATSR, Terra-MODIS, Terra-ASTER and DMSP-SSM/I. Atmospheric effects on measured brightness temperatures are described and atmospheric corrections using radiative transfer models (RTM) are explained. The substitution of RTM with neural networks (NN) for faster forward calculations is also discussed. The methods reviewed for LST estimation are the single-channel method, the split-window techniques (SWT), and the multi-angle method, and, for emissivity estimation, the normalized emissivity method (NEM), the thermal infrared spectral indices (TISI) method, the spectral ratio method, alpha residuals, normalized difference vegetation index (NDVI )-based methods, classification-based emissivity and the temperature emissivity separation (TES) algorithm.

Document Type: Review Article

DOI: http://dx.doi.org/10.1080/01431160110115041

Publication date: July 20, 2002

More about this publication?
Related content

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more