Skip to main content

Estimating sulphide ore grade in broken rock using visible/infrared hyperspectral reflectance spectra

Buy Article:

$59.35 plus tax (Refund Policy)

Abstract:

The field of hyperspectral remote sensing has developed rapidly for widespread mineral mapping from airborne platforms. The purpose of the current study was to examine whether hyperspectral spectrometry (0.35-2.5 m) can be used in an underground mining environment for mapping the grade of sulphide ore in rock faces, hand specimens and core logging. Naturally broken samples of barren and ore-bearing rocks were collected from mines in the Sudbury Basin, Ontario, and dry and wet reflectance were measured. The sulphide minerals exhibit a one-sided absorption band at short wavelengths known as a conductance band. The hydroxyl-bearing silicates exhibit a triple absorption feature near 2.3 m. Two ratios, one describing the conductance band and one describing the hydroxyl band, can be used to separate high grade ores (>20-25% sulphides) from barren and lower grade rocks. The conductance band ratio can also be used to estimate the concentration of chalcopyrite alone, ±15% chalcopyrite, absolute. Errors are proportional to the concentration of pyrrhotite and pentlandite. Errors can be reduced if total sulphides are estimated by other means, which a parallel study indicates is possible using thermal reflectance wavelengths. The study indicates that there is a high potential to use hyperspectral tools to grade sulphide ores.

Document Type: Research Article

DOI: http://dx.doi.org/10.1080/01431160110075604

Publication date: June 1, 2002

More about this publication?
tandf/tres/2002/00000023/00000011/art00007
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more