If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

The JERS Amazon Multi-season Mapping Study (JAMMS): observation strategies and data characteristics

$61.74 plus tax (Refund Policy)

Buy Article:

Abstract:

The Japanese Earth Resources Satellite (JERS-1) Amazon Multiseason Mapping Study (JAMMS), part of the Global Rain Forest Mapping (GRFM) project led by the National Space Development Agency of Japan (NASDA), had an ambitious agenda to map the entire Amazon river floodplain (and surrounding areas) twice at high resolution. The observation strategy carried out by NASDA for the JAMMS project and the other elements of the GRFM project (1995-1997) constituted the first time that a spaceborne Synthetic Aperture Radar (SAR) successfully implemented a continental scale, coordinated seasonal mapping campaign. This observation strategy, chosen around the flooding cycle of the major river systems, was designed to provide the first high-resolution measurement of inundation extent by the Amazon river and its tributaries. In order for the scientific community at large to be able to exploit this dataset, the characteristics of the data (resolution, radiometric and geometric calibration, coverage, and ability to be mosaicked) must be well understood. We find that the quantization of the Alaska SAR Facility (ASF) imagery impacts the range of backscatter values that may be observed, in contrast to the NASDA processed imagery. The noise equivalent 0 is -15 dB at worst, but improves to about -20 dB at the centre of the swath. The resolution of the ASF imagery is slightly worse than that processed by NASDA. The initial geolocation accuracy of the ASF processed imagery is quite poor, but may be improved during the mosaicking process. The relative radiometric calibration of the data may be improved to about 0.2 dB by comparing the calibration of overlapping imagery, and through a careful analysis of cross-track trends in the data.

Document Type: Research Article

DOI: http://dx.doi.org/10.1080/01431160110092966

Publication date: April 10, 2002

More about this publication?
Related content

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more