If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Comparing expert systems and neural fuzzy systems for object recognition in map dataset revision

$61.74 plus tax (Refund Policy)

Buy Article:


Recognition of objects extracted from remotely sensed imagery requires the matching of object properties with prior stored knowledge. Various properties were used in this study to form the model of a priori knowledge. A GIS (geographical information system) dataset was used to assist the extraction of shape descriptors, reflectance and height above ground characteristics of classes of object including building, road, grassland and tree. Human interpreters are capable of recognizing objects in natural scenes (including aerial photography) that display complex, overlapping composition and representation. Objects extracted from such imagery are inherently fuzzy. In order to perform the recognition task by computer, such uncertainty must be accommodated. Many researchers have used the robustness of neural networks to accomplish such recognition. In this work, we utilized a fuzzy expert system and an adaptive neuro-fuzzy system to train, adapt and recognize objects in three complex aerial scenes.

Document Type: Research Article

DOI: http://dx.doi.org/10.1080/01431160110040305

Publication date: February 20, 2002

More about this publication?
Related content

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more