Skip to main content

Genetic classifiers for remotely sensed images: comparison with standard methods

Buy Article:

$55.00 plus tax (Refund Policy)

In this article the effectiveness of some recently developed genetic algorithm-based pattern classifiers was investigated in the domain of satellite imagery which usually have complex and overlapping class boundaries. Landsat data, SPOT image and IRS image are considered as input. The superiority of these classifiers over k-NN rule, Bayes' maximum likelihood classifier and multilayer perceptron (MLP) for partitioning different landcover types is established. Results based on producer's accuracy (percentage recognition score), user's accuracy and kappa values are provided. Incorporation of the concept of variable length chromosomes and chromosome discrimination led to superior performance in terms of automatic evolution of the number of hyperplanes for modelling the class boundaries, and the convergence time. This non-parametric classifier requires very little a priori information, unlike k-NN rule and MLP (where the performance depends heavily on the value of k and the architecture, respectively), and Bayes' maximum likelihood classifier (where assumptions regarding the class distribution functions need to be made).
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Document Type: Research Article

Publication date: 2001-09-01

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more