Investigating the potential for soil moisture and surface roughness monitoring in drylands using ERS SAR data

$61.74 plus tax (Refund Policy)

Buy Article:

Abstract:

Multitemporal ERS-1 and ERS-2 SAR data were acquired for northern Jordan between 1995 and 1997 to investigate changes in the backscatter coefficients of a range of typical desert land surfaces. The changes in backscatter found were ascribed to variations in surface soil moisture, and changes in surface roughness caused by a range of natural and anthropogenic factors. Data collected from monitored sites were input into the Integral Equation Model (IEM). The model outputs were strongly correlated with observed backscatter coefficients (r2=0.84). The results show that the successful monitoring of soil moisture in these environments is strongly dependent on the surface roughness. On surfaces with RMS height 0.5 cm, the sensitivity of the backscatter coefficient to changes in surface microtopography did not allow accurate soil moisture estimation. Microtopographic change on rougher surfaces has less influence on the backscatter coefficient, and the probability of soil moisture estimation from SAR imagery is greater. These results indicate that knowledge of the surface conditions (both in terms of surface roughness and geomorphology) is essential for accurate soil moisture monitoring, whether in a research or operational context. The potential benefits of these findings are discussed in the context of the Jordan Badia Research and Development Project.

Document Type: Research Article

DOI: http://dx.doi.org/10.1080/01431160121099

Publication date: July 10, 2001

More about this publication?
Related content

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more