Skip to main content

Estimation of urban vegetation abundance by spectral mixture analysis

Buy Article:

$63.00 plus tax (Refund Policy)


The spatio-temporal distribution of vegetation is a fundamental component of the urban environment that can be quantified using multispectral imagery. However, spectral heterogeneity at scales comparable to sensor resolution limits the utility of conventional hard classification methods with multispectral reflectance data in urban areas. Spectral mixture models may provide a physically based solution to the problem of spectral heterogeneity. The objective of this study is to examine the applicability of linear spectral mixture models to the estimation of urban vegetation abundance using Landsat Thematic Mapper (TM) data. The inherent dimensionality of TM imagery of the New York City area suggests that urban reflectance measurements may be described by linear mixing between high albedo, low albedo and vegetative endmembers. A three-component linear mixing model provides stable, consistent estimates of vegetation fraction for both constrained and unconstrained inversions of three different endmember ensembles. Quantitative validation using vegetation abundance measurements derived from high-resolution (2 m) aerial photography shows agreement to within fractional abundances of 0.1 for vegetation fractions greater than 0.2. In contrast to the Normalised Difference Vegetation Index (NDVI), vegetation fraction estimates provide a physically based measure of areal vegetation abundance that may be more easily translated to constraints on physical quantities such as vegetative biomass and evapotranspiration.

Document Type: Research Article


Affiliations: Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY 10964, USA

Publication date: 2001-05-20

More about this publication?
  • Access Key
  • Free ContentFree content
  • Partial Free ContentPartial Free content
  • New ContentNew content
  • Open Access ContentOpen access content
  • Partial Open Access ContentPartial Open access content
  • Subscribed ContentSubscribed content
  • Partial Subscribed ContentPartial Subscribed content
  • Free Trial ContentFree trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more