Skip to main content

Mapping land cover types in the Amazon Basin using 1 km JERS-1 mosaic

Buy Article:

$55.00 plus tax (Refund Policy)



During the Global Rain Forest Mapping (GRFM) project, the JERS-1 SAR (Synthetic Aperture Radar) satellite acquired wall-to-wall image coverage of the humid tropical forests of the world. The rationale for the project was to demonstrate the application of spaceborne L-band radar in tropical forest studies. In particular, the use of orbital radar data for mapping land cover types, estimating the area of floodplains, and monitoring deforestation and forest regeneration were of primary importance. In this paper we examine the information content of the JERS-1 SAR data for mapping land cover types in the Amazon basin. More than 1500 high-resolution (12.5 m pixel spacing) images acquired during the low flood period of the Amazon river were resampled to 100 m resolution and mosaicked into a seamless image of about 8 million km2, including the entire Amazon basin. This image was used in a classifier to generate a 1 km resolution land cover map. The inputs to the classifier were 1 km resolution mean backscatter and seven first-order texture measures derived from the 100 m data by using a 10 x 10 independent sampling window. The classification approach included two interdependent stages. First, a supervised maximum a posteriori Baysian approach classified the mean backscatter image into five general cover categories: terra firme forest (including secondary forest), savanna, inundated vegetation, open deforested areas and open water. A hierarchical decision rule based on texture measures was then applied to attempt further discrimination of known subcategories of vegetation types based on taxonomic information and woody biomass levels. True distributions of the general categories were identified from the RADAMBRASIL project vegetation maps and several field studies. Training and validation test sites were chosen from the JERS-1 image by consulting the RADAM vegetation maps. After several iterations and combining land cover types, 14 vegetation classes were successfully separated at the 1 km scale. The accuracy of the classification methodology was estimated to be 78% when using the validation sites. The results were also verified by comparison with the RADAM- and AVHRR-based 1 km resolution land cover maps.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: 2000-04-15

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more