Skip to main content

Comparison of three different methods to select feature for discriminating forest cover types using SAR imagery

Buy Article:

$55.00 plus tax (Refund Policy)

Three methods (fuzzy partition method, stepwise regression analysis and principal component analysis) were used to select meaningful texture features for discriminating forest cover types. The initial texture set was extracted from the wavelet sub-images. Feature selection was based on all texture features of four sub-images combined. Recognition of forest cover types was accomplished by the neural network of learning vector quantization. The performance of these techniques was evaluated using a case study area at Whitecourt, Alberta, Canada. The selection procedure seemed to be adequate to extract meaningful texture features to help discriminate forest cover types, because the classification accuracy of the selected feature sets was improved. In addition, the optimization process can be considered as an efficient one, since the number of features was reduced to about 24.5-66.8% of the total 208 features using the three selection methods.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: 2000-07-01

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more