Comparison of three different methods to select feature for discriminating forest cover types using SAR imagery

$60.01 plus tax (Refund Policy)

Buy Article:

Abstract:

Three methods (fuzzy partition method, stepwise regression analysis and principal component analysis) were used to select meaningful texture features for discriminating forest cover types. The initial texture set was extracted from the wavelet sub-images. Feature selection was based on all texture features of four sub-images combined. Recognition of forest cover types was accomplished by the neural network of learning vector quantization. The performance of these techniques was evaluated using a case study area at Whitecourt, Alberta, Canada. The selection procedure seemed to be adequate to extract meaningful texture features to help discriminate forest cover types, because the classification accuracy of the selected feature sets was improved. In addition, the optimization process can be considered as an efficient one, since the number of features was reduced to about 24.5-66.8% of the total 208 features using the three selection methods.

Document Type: Research Article

DOI: http://dx.doi.org/10.1080/01431160050021312

Publication date: July 1, 2000

More about this publication?
Related content

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more