Skip to main content

Neural network based methods for cloud classification on AVHRR images

Buy Article:

$60.90 plus tax (Refund Policy)


Artificial neural networks trained on spectral and textural features extracted from Advanced Very High Resolution Radiometer (AVHRR) images have been used to develop an automated cloud classification system. Selection of the optimum combination of features was achieved by using statistical methods presented in earlier work by Gu et al. and by running large numbers of neural network simulations on test datasets. The performance of these methods surpasses that of other approaches such as the use of Gabor filters for texture segmentation and the maximum likelihood classifier. A particular architecture for an operational classification system is presented based on a two-stage multiple network configuration which is shown to segment complex images to a high degree of accuracy and achieves an overall accuracy on an independent, representative test set of 91%.

Document Type: Research Article


Publication date: May 20, 2000

More about this publication?

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Partial Open Access Content
Partial Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more