Skip to main content

Estimating maize production in Kenya using NDVI: some statistical considerations

Buy Article:

$55.00 plus tax (Refund Policy)

A regression model approach using a normalized difference vegetation index (NDVI) has the potential for estimating crop production in East Africa. However, before production estimation can become a reality, the underlying model assumptions and statistical nature of the sample data (NDVI and crop production) must be examined rigorously. Annual maize production statistics from 1982-90 for 36 agricultural districts within Kenya were used as the dependent variable; median area NDVI (independent variable) values from each agricultural district and year were extracted from the annual maximum NDVI data set. The input data and the statistical association of NDVI with maize production for Kenya were tested systematically for the following items: (1) homogeneity of the data when pooling the sample, (2) gross data errors and influence points, (3) serial (time) correlation, (4) spatial autocorrelation and (5) stability of the regression coefficients. The results of using a simple regression model with NDVI as the only independent variable are encouraging (r 0.75, p 0.05) and illustrate that NDVI can be a responsive indicator of maize production, especially in areas of high NDVI spatial variability, which coincide with areas of production variability in Kenya.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: 1998-09-10

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more