Skip to main content

Semi-empirical models and scaling: a least square method for remote sensing experiments

Buy Article:

$55.00 plus tax (Refund Policy)

Models used in remote sensing are based on the assumed relationship between measured radiances and the physical parameters of the soil surface. A number of them are semi-empirical, in the sense that they contain constants adjusted to take account of in situ experiments, generally carried out on a given type of medium. Once validated in situ, these models are applied to large scale areas with global radiances. In this paper, we demonstrate that constants taken to be appropriate for in situ experiments are no longer appropriate for global radiances. For remote sensing applications, we demonstrate that these constants must be determined by a new least square cost function. Finally, we evaluate, for various simulated cases using the LAI and the APAR models, the magnitude of gain of the new method for space applications, when compared to classical examples.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Document Type: Research Article

Publication date: 1998-09-10

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more