Skip to main content

A segmentation approach to classification of remote sensing imagery

Buy Article:

$63.00 plus tax (Refund Policy)


In this paper we propose a new approach for land cover classification of remote sensing imagery. It is a two-stage technique, where in the first stage the global feature-based technique of histogram thresholding generalized to multidimensional cases developed by Khotanzad and Bouarfa (1990) is used, and in the second stage a local feature-based region growing technique is generalized to grow multiple non-contiguous regions in parallel. The Khotanzad and Bouarfa technique has the advantage of being a non-iterative unsupervised classification technique, but suffers from a failure to detect regions of small spatial extent which may have high local contrast but low weightage in the global feature space. Our proposed technique divides the image into blocks of suitable size so that regions of small spatial extent are detected in the block's histogram, and they are grown across neighboring blocks. The proposed technique is illustrated with actual remote sensing imagery. A number of choices of feature space for the first stage, and different measures of similarity for the second stage were investigated on remote sensing data, both visually as well as quantitatively in terms of classification accuracy. It was found that the xyz colour space (Ohta et al. 1980) for the first stage, and the J-M distance for the second stage similarity measure, gave the best results in terms of classification accuracy. Though the approach is unsupervised and non-iterative in nature, it has given a classification accuracy of better than 91 per cent for a five-class landcover classification.

Document Type: Research Article


Publication date: 1998-06-10

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more