Skip to main content

Improving classical contextual classifications

Buy Article:

$60.90 plus tax (Refund Policy)

Abstract:

This paper shows some combinations of classifiers that achieve high accuracy classifications. Traditionally the maximum likelihood classification is used as an initial classification for a contextual classifier. We show that by using different non-parametric spectral classifiers to obtain the initial classification, we can significatively improve the accuracy of the classification with a reasonable computational cost. In this work we propose the use of different spectral classifications as initial maps for a contextual classifier (ICM) in order to obtain some interesting combinations of spectral-contextual classifiers for remote sensing image classification with an acceptable trade-off between the accuracy of the final classification and the computational effort required.

Document Type: Research Article

DOI: http://dx.doi.org/10.1080/014311698215379

Publication date: May 20, 1998

More about this publication?
tandf/tres/1998/00000019/00000008/art00010
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more