If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Effects of urban surface geometry on remotely-sensed surface temperature

$61.74 plus tax (Refund Policy)

Buy Article:


Direct observations of urban surface temperature in daytime are made using a thermal scanner mounted in a helicopter over three land-use areas in Vancouver, B.C. The results reveal strong directional variations in the observed apparent surface temperature. The variations arise due to the differential patterns of irradiated and shaded surfaces within the sensor field of view created by the three-dimensional urban surface structure and the position of the Sun. The directional variations may be considered to be a form of effective anisotropy due to the large scale roughness of the urban surface. Variations in excess of 9 C were measured over a downtown area. Urban residential and light industrial land-use areas also exhibited strong effective anisotropy. The directional temperature variations are of similar magnitude to atmospheric corrections applied to thermal imagery. This implies that effective anisotropy should receive serious consideration in the interpretation of thermal imagery obtained over urban areas. The scale dependence of the effective anisotropy is discussed.

Document Type: Research Article

DOI: http://dx.doi.org/10.1080/014311698215784

Publication date: March 20, 1998

More about this publication?
Related content

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more