Skip to main content

Land cover classification in rugged areas using simulated moderateresolution remote sensor data and an artificial neural network

Buy Article:

$63.00 plus tax (Refund Policy)


Rugged land cover classification accuracies produced by an artificial neural network (ANN) using simulated moderate-resolution remote sensor data exceed overall accuracies produced using the maximum likelihood rule (MLR). Land cover in spatially-complex areas and at broad spatial scales may be difficult to monitor due to ambiguities in spectral reflectance information produced from cloud-related and topographic effects, or from sampling constraints. Such ambiguities may produce inconsistent estimates of changes in vegetation status, surface energy balance, run-off yields, or other land cover characteristics. By use of a 'back-classification' protocol, which uses the same pixels for testing as for training the classifier, tests of ANN versus MLR-based classifiers demonstrated the ANNbased classifier equalled or exceeded classification accuracies produced by the MLR-based classifier in five of six land cover classes evaluated.

Document Type: Research Article


Publication date: 1998-01-10

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more