Skip to main content

A non-linear regression form for vegetation index-crop yield relation incorporating acquisition date normalization

Buy Article:

$55.00 plus tax (Refund Policy)

A non-linear form relating vegetation indices (VI) to crop grain yields which normalizes for differences in acquisition date is suggested. It is based on the assumption that deviations in VI near the peak VI follow a quadratic behaviour. This form gave a higher R2 value than a simple VI-yield linear model on a multi-year, multi-location data set of IRS (Indian Remote Sensing Satellite-1A) LISS-I(Linear Imaging Self Scanner-I) derived near-infrared (NIR)/red radiance ratios and wheat grain yields in a study site in Madhya Pradesh (India). As the suggested model includes time of peak as a variable, it allows integration of results from other sources, such as, weather-based crop phenology model or high repetivity spectral data into the VI-yield relation.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Document Type: Research Article

Publication date: 1997-04-10

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more