Skip to main content

Neural classification of SPOT imagery through integration of intensity and fractal information

Buy Article:

$55.00 plus tax (Refund Policy)

Abstract. It is well known that higher dimensional information essentially leads to better accuracy in remotely sensed image classification. This paper is aimed at land cover classification from SPOT-HRV imagery by the integration of multispectral intensity and texture information. In particular, fractal dimensions are extracted using a wavelet transform as image texture. A neural network approach to classification is adopted in this paper. The underlying network is a modified multilayer perceptron trained by a Kalman filtering technique. The main advantages of this network are (1) its non-backpropagation fashion of learning which leads to a fast convergence, (2) a built-in optimization function, and (3) global scale. Saving computer storage space and a fast learning capability are in particular suitable features for remote sensing applications. Correlation analysis was subsequently performed on both the intensity and fractal images. It was found that fractal information significantly improves the discrimination capability of heterogeneous area such as in urban regions, while it slightly degrades accuracy for homogeneous areas, such as open water. The overall classification performance is superior to results obtained using reflectance only. Improvements over heterogeneous areas are demonstrated.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: 1997-03-10

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more