Skip to main content

Modelling spatial heterogeneity and anisotropy: child anaemia, sanitation and basic infrastructure in sub-Saharan Africa

Buy Article:

$63.00 plus tax (Refund Policy)


Public interventions in support of public health and housing in developing countries could benefit from better understanding of spatial heterogeneity and anisotropy. Estimation of directional variation within geographically weighted regression (GWR) faces problems of local parameter instability, border effects and, if extended to non- spatial attributes, potential endogeneity. This study formulates a GWR model where anisotropy is filtered out based on information from directional variograms. Along with classical regressions, the approach is applied to investigate child anaemia and its associations with household characteristics, sanitation and basic infrastructure in 173 regions of sub-Saharan Africa. Based on ordinary least squares (OLS) results, anaemia prevalence rates are up to three times more responsive to child morbidity (related to malaria and other diseases) than to other covariates. GWR estimates provide similar indications, but also point to poor sanitation facilities as a cofactor of severe anaemia particularly in east and southern Africa. The anisotropy-adjusted GWR is spatially stationary in residuals, and its estimated local parameters are less collinear than GWR with no adjustment. However, similar explanatory power and lack of significant bias in parameters estimated by the latter suggest that directional variation is largely captured by modelled co-movements among the variables.

Keywords: geographically weighted regression; housing standards and infrastructure; public health; variogram

Document Type: Research Article


Affiliations: Department of Economics,University of Botswana, Gaborone, Botswana

Publication date: 2012-03-01

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more