A multinomial logistic mixed model for the prediction of categorical spatial data

Authors: Cao, Guofeng; Kyriakidis, Phaedon C.; Goodchild, Michael F.

Source: International Journal of Geographical Information Science, Volume 25, Number 12, 1 December 2011 , pp. 2071-2086(16)

Publisher: Taylor and Francis Ltd

Buy & download fulltext article:

OR

Price: $61.16 plus tax (Refund Policy)

Abstract:

In this article, the prediction problem of categorical spatial data, that is, the estimation of class occurrence probability for (target) locations with unknown class labels given observed class labels at sample (source) locations, is analyzed in the framework of generalized linear mixed models, where intermediate, latent (unobservable) spatially correlated Gaussian variables (random effects) are assumed for the observable non-Gaussian responses to account for spatial dependence information. Within such a framework, a spatial multinomial logistic mixed model is proposed specifically to model categorical spatial data. Analogous to the dual form of kriging family, the proposed model is represented as a multinomial logistic function of spatial covariances between target and source locations. The associated inference problems, such as estimation of parameters and choice of the spatial covariance function for latent variables, and the connection of the proposed model with other methods, such as the indicator variants of the kriging family (indicator kriging and indicator cokriging) and Bayesian maximum entropy, are discussed in detail. The advantages and properties of the proposed method are illustrated via synthetic and real case studies.

Keywords: GLMM; categorical data; geostatistics; indicator kriging; logistic regression

Document Type: Research Article

DOI: http://dx.doi.org/10.1080/13658816.2011.600253

Affiliations: Department of Geography,University of California, Santa BarbaraCA, USA

Publication date: December 1, 2011

More about this publication?
Related content

Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content

Text size:

A | A | A | A
Share this item with others: These icons link to social bookmarking sites where readers can share and discover new web pages. print icon Print this page