Skip to main content

Scaling up: linking field data and remote sensing with a hierarchical model

Buy Article:

$55.00 plus tax (Refund Policy)

Ecologists often seek to understand patterns and processes across multiple spatial and temporal scales ranging from centimeters to hundreds of meters and from seconds to years. Hierarchical statistical models offer a framework for sampling design and analysis that can be used to incorporate the information collected at finer scales while allowing comparison at coarser scales. In this study we use a Hierarchical Bayesian model to assess the relationship between measurements collected on the ground at centimeter scales nested within 2 × 3 m quadrats, which are in turn nested within much larger (0.1-12 ha) plots. We compare these measurements with the Normalized Difference Vegetation Index (NDVI) derived from radiometrically and geometrically corrected 30-m resolution LANDSAT ETM+ data to assess the NDVI-Biomass relationship in the Cape Floristic Region of South Africa. Our novel modeling approach allows the data observed at submeter scales to be incorporated directly into the model and thus all the data (and variability) collected at finer scales are represented in the estimates of biomass at the LANDSAT scale. The model reveals that there is a strong correlation between NDVI and biomass, which supports the use of NDVI in spatiotemporal analysis of vegetation dynamics in Mediterranean shrubland ecosystems. The methods developed here can be easily generalized to other ecosystems and ecophysiological parameters.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Keywords: Hierarchical Bayes; biomass; ground truthing; remote sensing; scale

Document Type: Research Article

Affiliations: 1: Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA 2: Department of Decision Sciences, Duke University, NC, USA

Publication date: 2011-03-01

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more