Skip to main content

Using landscape characteristics to define an adjusted distance metric for improving kriging interpolations

Buy Article:

$63.00 plus tax (Refund Policy)

Interpolation of point measurements using geostatistical techniques such as kriging can be used to estimate values at non-sampled locations in space. Traditional geostatistics are based on the spatial autocorrelation concept that nearby things are more related than distant things. In this study, additional information was used to modify the traditional Euclidean concept of distance into an adjusted distance metric that incorporates similarity in terms of quantifiable landscape characteristics such as topography or land use. This new approach was tested by interpolating soil moisture content, pH and carbon-to-nitrogen (C:N) ratio measured in both the mineral and the organic soil layers at a field site in central Sweden. Semivariograms were created using both the traditional distance metrics and the proposed adjusted distance metrics to carry out ordinary kriging (OK) interpolations between sampling points. In addition, kriging with external drift (KED) was used to interpolate soil properties to evaluate the ability of the adjusted distance metric to incorporate secondary data into interpolations. The new adjusted distance metric typically lowered the nugget associated with the semivariogram, thereby better representing small-scale variability in the measured data compared to semivariograms based on the traditional distance metric. The pattern of the resulting kriging interpolations using KED and OK based on the adjusted distance metric were similar because they represented secondary data and, thus, enhanced small-scale variability compared to traditional distance OK. This created interpolations that agreed better with what is expected for the real-world spatial variation of the measured properties. Based on cross-validation error, OK interpolations using the adjusted distance metric better fit observed data than either OK interpolations using traditional distance or KED.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Keywords: C:N ratio; geostatistics; kriging; semivariogram; soil moisture; soil pH

Document Type: Research Article

Affiliations: 1: Physical Geography and Quaternary Geology, Stockholm University, Stockholm, Sweden 2: Aquatic Science and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden 3: Soil and Environment, Swedish University of Agricultural Sciences, Uppsala, Sweden 4: Physical Geography and Quaternary Geology, Stockholm University, Stockholm, Sweden,Department of Geography, University of Zurich, Zurich, Switzerland

Publication date: 2010-05-01

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more