Ant intelligence for solving optimal path-covering problems with multi-objectives

$60.01 plus tax (Refund Policy)

Buy Article:


Conventional methods have difficulties in forming optimal paths when raster data are used and multi-objectives are involved. This paper presents a new method of using ant colony optimization (ACO) for solving optimal path-covering problems on unstructured raster surfaces. The novelty of this proposed ACO includes the incorporation of a couple of distinct features which are not present in classical ACO. A new component, the direction function, is used to represent the 'visibility' in the path exploration. This function is to guide an ant walking toward the final destination more efficiently. Moreover, a utility function is proposed to reflect the multi-objectives in planning applications. Experiments have shown that classical ACO cannot be used to solve this type of path optimization problems. The proposed ACO model can generate near optimal solutions by using hypothetical data in which the optimal solutions are known. This model can also find the near optimal solutions for the real data set with a good convergence rate. It can yield much higher utility values compared with other common conventional models.

Keywords: Ant colony optimization; GIS; Multi-objectives; Path-covering; Site selection

Document Type: Research Article


Affiliations: School of Geography and Planning, Sun Yat-sen University, Guangzhou, 510275, China

Publication date: July 1, 2009

More about this publication?
Related content

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more