Skip to main content

Detection of multi-scale clusters in network space

Buy Article:

$60.90 plus tax (Refund Policy)


This paper proposes a new type of point-pattern analytical method, Network-Based Variable-Distance Clumping Method (NT-VCM), to analyse the distribution pattern of point objects and phenomena observed on a network. It is an extension of Planar Variable-Distance Clumping Method (PL-VCM) that was previously defined for point pattern analysis in Euclidian space. The purpose for developing NT-VCM is to identify point agglomerations across different scales called multi-scale network-based clumps among distributed points along a network. The paper first defines a network-based clump as a set of points where all its elements are found within a certain shortest-path distance from at least one other element of the same set. It then proposes NT-VCM as a technique to extract statistically significant multi-scale clumps on a network. The paper also proposes an efficient algorithm for computing NT-VCM, which involves the use of the Voronoi diagram, the Delaunay diagram and the minimum spanning tree that are adapted and newly extended for the purpose of analysis on a network. A comparative study of NT-VCM and PL-VCM using commercial facility data reveals a notable difference in the location as well as the size of the significant multi-scale clumps detected in the both cases. Results from the empirical study confirm that NT-VCM accounts for the actual network distance between the points, thus providing a more accurate description of point agglomerations along the network than PL-VCM does.

Keywords: Clump; Cluster detection; Network; Point pattern analysis

Document Type: Research Article


Affiliations: 1: Center for Spatial Information Science, University of Tokyo 5-1-5, Kashiwanoha, Kashiwa-shi, Chiba 277-8568, Japan 2: Department of Geography, University at Buffalo, The State University of New York, Buffalo, NY 14261, USA

Publication date: January 1, 2009

More about this publication?

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more