Geometric probability and GIS: some applications for the statistics of intersections

$63.37 plus tax (Refund Policy)

Buy Article:


This paper identifies analytical and empirical methods for determining the probability that lines and areas intersect tiles in a regular tessellation. Such intersections are common in geographical information systems (GIS) applications. Knowledge of intersection probabilities is valuable in many instances, including estimating complexity and time required to process a distance or viewshed operation, developing optimal tiling schemes for national georeferencing systems, precalculating the number of map sheets a spatial feature may occupy, and identifying appropriate cell resolutions for vector-to-raster conversions. Buffon's Needle-type solutions from the field of geometric probability provide the framework for deriving probabilities for lines. Probabilities for simple areas like rectangles and circles are derived using geometric techniques and illustrated using hypothetical examples. Employing such probabilities in spatial analysis may yield more rigorous and theoretically informed results from GIS analysis, leading to better decisions and greater insight into spatial phenomena.

Document Type: Research Article


Publication date: May 1, 2002

More about this publication?
Related content

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more