Skip to main content

Open Access Deep-layer autotrophic picoplankton maximum in the oligotrophic Lake Stechlin, Germany: origin, activity, development and erosion

Download Article:
(PDF 999.2568359375 kb)
Autotrophic picoplankton (APP) abundance, primary production and vertical distribution were studied in the oligotrophic Lake Stechlin (northeastern Germany) in 1994 and 1995. Within the euphotic zone APP contributed 34% of phytoplankton biomass and 35% of primary production. Annual average APP cell number was 209 × 103 cells ml−1, of which 95% were unicellular cyanobacteria, 2% were colonial cyanobacteria and 3% were eukaryotes. Three ecologically and/or morphologically different groups of APP were recognized: (i) unicellular cyanobacteria belonging to the genus Cyanobium, (ii) eukaryotic species growing in early spring under isothermal conditions and (iii) cyanobacteria, partly colonial species, growing in the stratified period in the euphotic zone. Three species of eukaryotic green algae were identified: Choricystis minor, Neocystis diplococca and Pseudodictyosphaerium jurisii, the latter two being colonial. This is the first record of the occurrence of colonial eukaryotes potentially of APP size in fresh waters. In summer picocyanobacteria were highly productive so the low net increase rates indicate that losses must be high. The dominant, Cyanobium population started growing in February with maximum abundance in late April, contributing significantly to the spring peak in phytoplankton biomass. During this growth period, the population was evenly distributed in the 60 m water column. By the time the maximum biomass occurred, inorganic nutrients had decreased below analytically detectable levels. Parallel to the onset of stratification a part of the population was grazed, most probably in the microbial loop and primarily in the upper 10-15 m. The rest of the Cyanobium population accumulated in a narrow layer in the upper hypoliminon. The APP remaining from the spring was persistent for much of the summer in this cold, high-nutrient (especially nitrate)/low-light environment. Short phosphorus-turnover times suggest that APP is probably phosphate-limited. The stability of the thermocline and the pattern of thermocline development in May affected the accumulation of the APP cells in the upper hypolimnion. Thus, this process is sensitive to the physical stability of the water column.
No References for this article.
No Supplementary Data.
No Article Media
No Metrics

Keywords: Cyanobium; Synechococcus; autotrophic picoplankton; deep chlorophyll maxima; eukaryotic picoplankton; isothermal conditions

Document Type: Research Article

Affiliations: 1: Balaton Limnological Institute of the Hungarian Academy of Science, H-8237 Tihany, Hungary 2: Institut für Gewässerökologie und Binnenfischerei im Forschungsverbund Berlin e. V., Abteilung Limnologie Geschichteter Seen, Alte Fischerhütte 2, D-16775, Neuglobsow, Germany 3: Hydrobiological Institute of the Czech Academy of Sciences, Ceské Budejovice CZ-37005, Czech Republic

Publication date: 1997-11-26

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more