Skip to main content

Freezing light with cold atoms

Buy Article:

$60.90 plus tax (Refund Policy)

Abstract:

The impact of disorder and localisation in electronic conduction was introduced more than half a century ago by Philip Anderson. In a much broader context of disorder-mediated wave dynamics it remains an important research area, and surprises abound. Meanwhile, research in ultracold atomic physics has led to phenomenally detailed elucidation of properties, including changes in phase, of quantum degenerate Bosonic and Fermionic gases. For example, beautiful experiments have recently demonstrated, in quasi one-dimensional systems, Anderson localisation of matter waves. In this brief essay, we describe and discuss research on wave localisation in the context of ultracold atomic physics, with a particular emphasis on light localisation in ultracold and high-density atomic gases. Essential ideas are reviewed, along with the current experimental status of the field, and promising avenues for future research are discussed.

Keywords: Anderson localisation; light localisation; quantum optics; ultracold atomic physics

Document Type: Research Article

DOI: https://doi.org/10.1080/00107510903024321

Affiliations: Department of Physics, Old Dominion University, Norfolk, VA, USA

Publication date: 2009-09-01

More about this publication?
  • Access Key
  • Free ContentFree content
  • Partial Free ContentPartial Free content
  • New ContentNew content
  • Open Access ContentOpen access content
  • Partial Open Access ContentPartial Open access content
  • Subscribed ContentSubscribed content
  • Partial Subscribed ContentPartial Subscribed content
  • Free Trial ContentFree trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more