Environmental magnetism and climate change

$61.20 plus tax (Refund Policy)

Buy Article:

Abstract:

A major and pressing problem is to understand how, and how fast, the Earth's climate has changed in the past, with and without human influences on the global carbon cycle. Magnetic, remanence-acquiring, minerals, mostly iron oxides and sulphides, occur ubiquitously in sediments. They can act as sensitive recorders of past climates, because as climate has varied (from glacial to interglacial, for example), the mineralogy, magnetic domain state, composition and source of these minerals has varied. Here, the magnetic properties of windblown dust and interbedded soil layers of the Chinese Loess Plateau are used to calculate rainfall for the last million years, identifying the waxing and waning of the Southeast Asian summer monsoon. Comparison of our magnetic rainfall record on land with environmental records from the deep-sea shows that summer monsoon intensity is linked with growth and decay of continental-sized ice sheets, in turn reflecting changes in the Earth's orbit around the Sun.

Document Type: Research Article

DOI: http://dx.doi.org/10.1080/00107510801889726

Affiliations: Lancaster Environment Centre, University of Lancaster, Lancaster, UK

Publication date: September 1, 2007

More about this publication?
Related content

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more