Optimization through quantum annealing: theory and some applications

$61.20 plus tax (Refund Policy)

Buy Article:


Quantum annealing is a promising tool for solving optimization problems, similar in some ways to the traditional (classical) simulated annealing of Kirkpatrick et al. Simulated annealing takes advantage of thermal fluctuations in order to explore the optimization landscape of the problem at hand, whereas quantum annealing employs quantum fluctuations. Intriguingly, quantum annealing has been proved to be more effective than its classical counterpart in many applications. We illustrate the theory and the practical implementation of both classical and quantum annealing-highlighting the crucial differences between these two methods-by means of results recently obtained in experiments, in simple toy-models, and more challenging combinatorial optimization problems (namely, Random Ising model and Travelling Salesman Problem). The techniques used to implement quantum and classical annealing are either deterministic evolutions, for the simplest models, or Monte Carlo approaches, for harder optimization tasks. We discuss the pro and cons of these approaches and their possible connections to the landscape of the problem addressed.

Document Type: Research Article

DOI: http://dx.doi.org/10.1080/00107510600861454

Affiliations: International School for Advanced Studies (SISSA), via Beirut 2–4, I-34014, Trieste, Italy, and INFM Democritos National Simulation Center, via Beirut 2–4, I-34014, Trieste, Italy

Publication date: July 1, 2006

More about this publication?
Related content

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more