If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Klein–Gordon equation for atoms

$61.74 plus tax (Refund Policy)

Buy Article:

Abstract:

The relativistic energy–momentum relation for a free atom in flight is translated into a free Klein–Gordon equation, in which the atomic mass is replaced by a differential operator M for the total centre-of-mass energy levels E . As the Klein–Gordon operator contains M 2 , it gives the squares of E . When all atomic constituents are treated relativistically, the squares appear automatically after elimination of the components of opposite ‘total chirality' from the wave function, and after a scaling of variables. For hydrogenic atoms, the new equations are nearly identical with the single-electron equation including hyperfine interaction. The time dependence of the Klein–Gordon operator implies exact energy conservation in radiative decays. The history of these atomic equations is reviewed. For quarkonium, the origin of the large hyperfine splitting is discussed, and a speculation about bound quark masses is mentioned.

Document Type: Research Article

DOI: http://dx.doi.org/10.1080/00107510500356894

Affiliations: Institut für Theoretische Teilchenphysik, Universität, D-76128, Karlsruhe, Germany

Publication date: January 1, 2006

More about this publication?
Related content

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more