Skip to main content

Optical lattices, ultracold atoms and quantum information processing

Buy Article:

$63.00 plus tax (Refund Policy)

Abstract:

We review novel methods for the investigation, control and manipulation of neutral atoms in optical lattices. These setups allow unprecedented quantum control over large numbers of atoms and thus are very promising for applications in quantum information processing. After introducing optical lattices we discuss the superfluid (SF) and Mott insulating (MI) states of neutral atoms trapped in such lattices and investigate the SF-MI transition as observed experimentally recently. In the second part of the paper we give an overview of proposals for quantum information processing and show different ways to entangle the trapped atoms, in particular the usage of cold collisions and Rydberg atoms. Finally, we discuss briefly the implementation of quantum simulators, entanglement enhanced atom interferometers, and ideas for robust quantum memory in optical lattices.

Document Type: Research Article

DOI: https://doi.org/10.1080/00107510410001705486

Publication date: 2004-09-01

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more