Skip to main content

Unravelling DNA

Buy Article:

$55.00 plus tax (Refund Policy)

The forces involved in the biology of life are carefully balanced between stopping thermal fluctuations ripping our DNA apart and having bonds weak enough to allow enzymes to function. The application of recently developed techniques for measuring piconewton forces and imaging at the nanometre scale on a molecule-by-molecule basis has dramatically increased the impact of single-molecule biophysics. This article describes the most commonly used techniques for imaging and manipulating single biomolecules. Using these techniques, the mechanical properties of DNA can be investigated, for example through measurements of the forces required to stretch and unzip the DNA double helix. These properties determine the ease with which DNA can be folded into the cell nucleus and the size and complexity of the accompanying cellular machinery. Part of this cellular machinery is enzymes, which manipulate, repair and transcribe the DNA helix. Enzymatic function is increasingly being investigated at the single molecule level to give better understanding of the forces and processes involved in the genetic cycle. One of the challenges is to transfer this understanding of single molecules into living systems. Already there have been some notable successes, such as the development of techniques for gene expression through the application of mechanical forces to cells, and the imaging and control of viral infection of a cell. This understanding and control of DNA has also been used to design molecules, which can self-assemble into a range of structures.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Document Type: Research Article

Publication date: 2004-07-01

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more