Skip to main content

Direct detection of WIMP dark matter

Buy Article:

$63.00 plus tax (Refund Policy)


The question of the nature of dark matter in the universe is perhaps the greatest problem facing cosmology and particle physics at present. New observations of the cosmic microwave background radiation and distant supernovae show that more that 90% of the mass in the universe is in the form of some unknown matter. Many lines of evidence from cosmology and particle physics suggest that the best candidate for this dark matter is a weakly interacting massive particle, or WIMP. Such particles are predicted by supersymmetry, a theory extending the Standard Model of particle physics, and many experiments around the world are now trying to directly detect these WIMPs. This article reviews the reasons for believing WIMPs to be the dark matter, and considers the challenges involved in detecting their rare low-energy interactions with normal matter. Current experimental searches are reviewed with regard to the claimed detection of WIMPs by the DAMA group. These experiments are just beginning to reach the sensitivity needed to detect, or rule out, supersymmetric WIMPs, and higher sensitivity future experiments are also discussed.

Document Type: Research Article


Publication date: 2003-05-01

More about this publication?
  • Access Key
  • Free ContentFree content
  • Partial Free ContentPartial Free content
  • New ContentNew content
  • Open Access ContentOpen access content
  • Partial Open Access ContentPartial Open access content
  • Subscribed ContentSubscribed content
  • Partial Subscribed ContentPartial Subscribed content
  • Free Trial ContentFree trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more