Skip to main content

Physics of the Earth's radiative energy balance

Buy Article:

$63.00 plus tax (Refund Policy)

The purpose of this paper is to review the status of research into one of the most challenging and important problems facing physics today: how does the atmosphere moderate the radiative energy balance that determines the Earth's climate? Behind this question lies the whole basis for understanding the greenhouse effect, including coupled feedback processes: this understanding has consequences for major issues of public concern, climate change and global warming. Following an introduction to the basic physics of the energy balance and the greenhouse effect, a discussion is given of how the spectrum of outgoing thermal radiation (by which the planet cools to space) depends on internal parameters such as surface temperature and atmospheric humidity. This includes a discussion of the sign and magnitude of the water vapour-climate feedback, and the 'super greenhouse effect'. It is shown that the role of cloud in the energy balance is extremely important, although poorly understood. Recent work to exploit the information contained in the resolved spectrum of outgoing longwave radiation (OLR) is described, including a new technique to search for the 'signal' of climate change within the 'noise' of natural climate fluctuations. Finally, some comments are offered on the problem of the predictability of future climate changes.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Document Type: Research Article

Publication date: 2000-09-01

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more