Skip to main content

Light with a twist in its tail

Buy Article:

$63.00 plus tax (Refund Policy)

Polarized light is a phenomenon familiar to anyone with a pair of polaroid sunglasses. Optical components that change the nature of the polarization from linear to circular are common in any undergraduate laboratory. Probably only physicists know that circularly polarized light carries with it an angular momentum that results from the spin of individual photons. Few physicists realize, however, that a light beam can also carry orbital angular momentum associated not with photon spin but with helical wavefronts. Beams of this type have been studied only over the last decade. In many instances orbital angular momentum behaves in a similar way to spin. But this is not always so: orbital angular momentum has its own distinctive properties and its own distinctive optical components. This article outlines the general behaviour of such beams; how they can be used to rotate microscopic particles; how they interact with nonlinear materials; the role they play in atom-light interactions and how the rotation of such beams results in a measurable frequency shift.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Document Type: Research Article

Publication date: 2000-09-01

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more