Skip to main content

Application of the nuclear liquid drop model to atomic and molecular physics problems

Buy Article:

$60.90 plus tax (Refund Policy)


The liquid drop model is applied to describe some basic properties of atoms, homoatomic molecules, metallic clusters of atoms and fullerene molecules. Equilibrium atomic size, energy and polarizability of the atom are calculated. Collective modes of oscillations (dipole, quadrupole and monopole, or breathing, ones) are regarded. Electromagnetic radiation by an atom, passing through a barrier is studied. Equilibrium volume of a homoatomic molecule of two atoms, axes ratio, dissociation energy and the frequencies of the dipole oscillations are calculated. Models to describe some properties of clusters and fullerene molecules are proposed. The size of the metallic cluster, its energy and the frequency of dipole oscillations are calculated. The frequencies of the dipole and breathing mode oscillations of the fullerene molecules are obtained. The calculated frequency of the dipole oscillations was found to be in a rather good accord with the experimental one.

Document Type: Research Article


Publication date: July 1, 2000

More about this publication?

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Partial Open Access Content
Partial Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more