Skip to main content

Optical lattices-crystalline structures bound by light

Buy Article:

$59.35 plus tax (Refund Policy)


In an optical lattice the interaction of an atomic gas with a spatially modulated light field is exploited to damp the atomic motion and then to trap the slowly moving atoms on a regular array of points associated with particular local states of the light field. The result of this process is the formation, from the initially cold but disordered gas, of a structure reminiscent of those found in solid-state crystalline materials. The study of these novel, optically-bound media necessitates the introduction to the description of the atom-light interaction of concepts more usually encountered in solid-state physics and promises to shed new light on the nature of atom-light interactions. Additionally, it provides a new means for the precise and highly parallel manipulation of atoms and a novel test-bed for some fundamental problems in physics.

Document Type: Research Article


Publication date: September 1, 1998

More about this publication?

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more