If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Estimating single-tree branch biomass of Norway spruce with terrestrial laser scanning using voxel-based and crown dimension features

$61.74 plus tax (Refund Policy)

Buy Article:

Abstract:

Many remote sensing-based methods estimating forest biomass rely on allometric biomass models for field reference data. Terrestrial laser scanning (TLS) has emerged as a tool for detailed data collection in forestry applications, and the methods have been proposed to derive, e.g. tree position, diameter-at-breast-height, and stem volume from TLS data. In this study, TLS-derived features were related to destructively sampled branch biomass of Norway spruce at the single-tree level, and the results were compared to conventional allometric models with field measured diameter and height. TLS features were derived following two approaches: one voxel-based approach with a detailed analysis of the interaction between individual voxels and each laser beam. The features were derived using voxels of size 0.1, 0.2, and 0.4 m, and the effect of the voxel size was assessed. The voxel-derived features were compared to features derived from crown dimension measurements in the unified TLS point cloud data. TLS-derived variables were used in regression models, and prediction accuracies were assessed through a Monte Carlo cross-validation procedure. The model based on 0.4 m voxel data yielded the best prediction accuracy, with a root mean square error (RMSE) of 32%. The accuracy was found to decrease with an increase in voxel size, i.e. the model based on the 0.1 m voxel yielded the lowest accuracy. The model based on crown measurements had an RMSE of 34%. The accuracies of the predictions from the TLS-based models were found to be higher than from conventional allometric models, but the improvement was relatively small.

Keywords: biomass; forest inventory; lidar; terrestrial laser scanning

Document Type: Research Article

DOI: http://dx.doi.org/10.1080/02827581.2013.777772

Affiliations: 1: Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway 2: Norwegian Forest and Landscape Institute, National Forest Inventory, Ås, Norway

Publication date: July 1, 2013

More about this publication?
Related content

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more