Skip to main content

Quantitative estimates of tree species selectivity by moose (Alces alces) in a forest landscape

Buy Article:

$60.90 plus tax (Refund Policy)


An extensive literature is available on browsing preference for certain tree species. However, useful predictive tools for estimating the impact of deer on forests production and biodiversity can still be improved. A step in that direction is not only to rank preference among tree species but also to quantify the relative risk of being browsed. The foraging selectivity of moose was evaluated using three different statistical methods developed to study habitat utilization. The general pattern for the three methods was consistent. From the results, groups of forage species were clustered and a quantitative index of selectivity was calculated for the groups. The selectivity index showed that rowan (Sorbus aucuparia), willow (Salix ssp.) and aspen (Populus tremula) had a 14 times higher probability of being browsed than a group consisting of Scots pine (Pinus sylvestris) and downy birch (Betula pubescens), while juniper (Juniperus communis) and silver birch (Betula pendula) had a 3.5 times higher probability than Scots pine and downy birch. Since the most preferred species were the least abundant, one should be cautious about the generality of the index between areas, as it may indicate that preference depends on plant species composition. The method used can easily be applied in forest management. Information on quantitative selectivity indices may improve the possibility of managing moose in accordance with acceptable browsing damage.

Keywords: Alces alces; Pinus sylvestris; browsing; compositional analysis; diet; preference; selectivity index

Document Type: Research Article


Affiliations: 1: Grimsö Wildlife Research Station, Department of Ecology, Swedish University of Agricultural Sciences, Riddarhyttan, Sweden 2: Swedish Forest Agency, Borås, Sweden 3: Department of Ecology, Animal Ecology, Ecology Building, Lund University, Lund, Sweden

Publication date: January 1, 2007

More about this publication?

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more