Skip to main content

Removal of Basic Dye Crystal Violet from Aqueous Solution by Cu(II)-Loaded Montmorillonite

Buy Article:

$59.35 plus tax (Refund Policy)


The effects of contact time, reaction temperature, and ionic strength on crystal violet adsorption onto Cu(II)-loaded montmorillonite were studied. The kinetic experimental data were analyzed using pseudo-first-order, pseudo-second-order, and Elovich equations to examine the adsorption mechanism. The result suggested that the adsorption was best represented by the pseudo-second-order equation. The suitability of the Langmuir, Freundich, and Temkin isotherms to equilibrium data was also investigated at 25°C. The maximum adsorption capacity was 114.3 mg dye/g Cu(II)-loaded montmorillonite at adsorbent concentration 1 g/L. The differential heat of adsorption was evaluated and the result showed that adsorption of crystal violet onto the Cu-loaded sample was chemical in nature. The ionic strength and reaction temperature exhibited an insignificant impact on the crystal violet adsorption. The Cu(II)-loaded montmorillonite could serve as low-cost adsorbents for removing crystal violet from aqueous solution compared to the data reported in the literature.

Keywords: Cu(II)-loaded montmorillonite; crystal violet; isotherms; kinetics; wastewater treatment

Document Type: Research Article


Affiliations: Department of Chemical Engineering, Huaihai Institute of Technology, Lianyungang, Jiangsu, China

Publication date: January 1, 2011


Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more