Skip to main content

Polymeric Titanium Oxychloride Sorbent for 188W/188Re Nuclide Pair Separation

Buy Article:

$55.00 plus tax (Refund Policy)

The chemical synthesis conditions (TiCl4: iPrOH reagent ratio and reaction temperature scheme) were optimized for the preparation of polymeric titanium oxychloride sorbent which met the requirements for clinically useful 188W/188Re generator production, such as high W-adsorption capacity, high 188Re-elution yield, low 188W-breakthrough, and good mechanical stability. This polymeric material was formed by polycondensation of titanium-oxychloride units, the chemical formula of which was supposed as [OTiO (Ti40 Cl80 (OH) 80 (TiO2)95.60H2O) OTiO]n. The effect of the W-content of tungstate solution on the WO42- ion adsorption (with minimizing the poly-tungstate ion adsorption) and its covalent bonding with the Ti metal atoms in the polymeric matrix were justified with respect to the optimal W-adsorption conditions for the preparation of a useful 188W/188Re generator column. The high W-adsorption capacity of about 515.6 mg W/g sorbent and 188Re elution yield of higher than 85% wereachieved. The large difference in the distribution ratio values found for alumina and polymeric titanium oxychloride sorbent in 0.005% NaCl solution (DW,Re-188 = 50 and DW, Re-188 = 1.0, respectively) offered an advantage for the preparation of a consecutive-elution based 188Re generator system which combined both 188Re elution and 188Re concentrating processes in one portable system. This generator system is of a tandem column type which consists of a polymeric titanium oxychloride sorbent coupled to an alumina column. This system gave a 188Re concentration factor of approximately 10. The overall 188Re yield achieved from this system was >80%. 188W isotope and elemental tungsten breakthrough were not detected in its 188Re eluate. This system thus offers a potential application for clinically useful 188Re production using low specific radioactivity 188W (around 500 mCi/g) producible in a medium neutron flux reactor.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: 188Re generator; Concentration of 188Re-perrhenate solution; high tungsten adsorption capacity sorbent; inorganic polymer; titanium-dioxide

Document Type: Research Article

Affiliations: 1: Radiopharmaceutical Research Institute, Australian Nuclear Science & Technology Organisation, Menai NSW, Australia 2: Nuclear Medicine Department, ChoRay Hospital, VN

Publication date: 01 January 2009

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more