Skip to main content

A novel protocol of energy optimisation for predicted protein structures built by homology modelling

Buy Article:

$63.00 plus tax (Refund Policy)

Homology modelling was applied to predict the three-dimensional (3D) structures of six sets of lipase proteins. Sequence identities between the target and template were 34.6, 44.9, 57.4, 69.9, 79.0 and 86.2%, respectively. Then, eight different protocols including three optimising factors [periodically bounded cell (PBC) water, molecular dynamics (MD) simulation, 'grade-unpacking' strategy or 'combinatorial' strategy] were used to refine the initial model of each system. By comparing the energy-optimised models with the true 3D structure of the target protein in terms of all backbone atoms' root mean square deviation, we determined a novel but all-purpose protocol for model refinement. The protocol refined a homology model by adopting the 'grade-unpacking' strategy for energy minimisation while the model was solvated in PBC water. Furthermore, by comparing the influence of each single optimising factor on the accuracy of the refined structure, we found that introducing the MD simulation into the model refinement method would decrease the accuracy of the final protein structure while methods with either PBC water or the 'grade-unpacking' strategy would increase the accuracy of the final model.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Keywords: grade-unpacking; homologue modelling; model refinement; molecular dynamics simulation

Document Type: Research Article

Affiliations: State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, P.R. China

Publication date: 2010-11-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more