Skip to main content

Commentary: Legal Minimum Tread Depth for Passenger Car Tires in the U.S.A.—A Survey

Buy Article:

$63.00 plus tax (Refund Policy)

Available tire traction is a significant highway safety issue, particularly on wet roads. Tire-roadway friction on dry, clean roads is essentially independent of tread depth, and depends primarily on roadway surface texture. However, tire-wet-roadway friction, both for longitudinal braking and lateral cornering forces, depends on several variables, most importantly on water depth, speed and tire tread depth, and the roadway surface texture. The car owner-operator has control over speed and tire condition, but not on water depth or road surface texture. Minimum tire tread depth is legislated throughout most of the United States and Europe. Speed reduction for wet road conditions is not. A survey of state requirements for legal minimum tread depth for passenger vehicle tires in the United States is presented. Most states require a minimum of 2/32 of an inch (approximately 1.6 mm) of tread, but two require less, some have no requirements, and some defer to the federal criterion for commercial vehicle safety inspections. The requirement of 2/32 of an inch is consistent with the height of the tread-wear bars built in to passenger car tires sold in the United States, but the rationale for that requirement, or other existing requirements, is not clear. Recent research indicates that a minimum tread depth of 2/32 of an inch does not prevent significant loss of friction at highway speeds, even for minimally wet roadways. The research suggests that tires with less than 4/32 of an inch tread depth may lose approximately 50 percent of available friction in those circumstances, even before hydroplaning occurs. It is concluded that the present requirements for minimum passenger car tire tread depth are not based upon rational safety considerations, and that an increase in the minimum tread depth requirements would have a beneficial effect on highway safety.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Keywords: Loss of Control; Tire; Tread Depth; Vehicle

Document Type: Research Article

Affiliations: William Blythe, Inc., Palo Alto, California, USA

Publication date: 2006-06-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more