Skip to main content


Buy Article:

$60.90 plus tax (Refund Policy)


We present a new model of large-scale multilayer convection in solar type stars. This model allows us to understand such self-similar structures observed at solar surface as granulation, supergranulation and giant cells. We study the slow-rotated hydrogen star without magnetic field with the spherically-symmetric convective zone. The photon's flux comes to the convective zone from the central thermonuclear zone of the star. The interaction of these photons with the fully ionized hydrogen plasma with <$>T \gt 10^5\,\hbox{K}<$> is carried out by the Tomson scattering of photon flux on protons and electrons. Under these conditions plasma is optically thick relative to the Tomson scattering. This fact is the fundamental one for the multilayer convection formation. We find the stationary solution of the convective zone structure. This solution describes the convective layers responsible to the formation of the structures on the star's surface.

Keywords: Large-scale convection; Solar atmosphere structures; Tomson scattering

Document Type: Research Article


Affiliations: Sternberg Astronomical Institute, Moscow 119899, Russia

Publication date: January 1, 2002

More about this publication?

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Partial Open Access Content
Partial Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more