Skip to main content

Supply requirement prediction during long duration space missions using Bayesian estimation

Buy Article:

$59.35 plus tax (Refund Policy)

Abstract:

This paper examines the probabilistic relationship between resource consumption and crew workload in an analogue Mars Base scenario. We use data from the 2004 season of the Flashline Mars Arctic Research Station (FMARS) to define a probabilistic relationship between food consumption, planned workload, and actual work conducted by the crew. Bayesian estimation is then used as a mathematical method of learning this relationship. The learned model can be used as a basis for future logistics planning for a crew in a given environment - food supplies and work conducted would be tracked daily, allowing base mission operations to predict and adjust critical re-supply dates from learned data and a planned workload. We show results from field exercises, which demonstrate considerably greater prediction accuracy than current methods, and which are directly applicable to long-duration space missions, regardless of individual crew makeup and personal needs.

Keywords: Aerospace; Bayesian networks; Consumption; Logistics; Modelling; Supply prediction

Document Type: Research Article

DOI: http://dx.doi.org/10.1080/13675560701281396

Affiliations: 1: ARC Centre of Excellence in Autonomous Systems, The University of Sydney, NSW, Australia 2: The Mars Society International, WA, USA 3: The Mars Society International, Santa Rosa, CA, USA

Publication date: December 1, 2007

More about this publication?
tandf/cjol/2007/00000010/00000004/art00004
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more