If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Effect of Botanical Aromatic Compounds and Seed-surface pH on Growth and Colonization of Cotton Plant Growth-promoting Rhizobacteria

$61.74 plus tax (Refund Policy)

Buy Article:

Abstract:

Citral (3 , 7 - dimethyl - 2 , 6 - octadienal) , furfural (2 - furaldehyde) and benzaldehyde (benzoic adel hyde) previously demonstrated control activity against Meloidogyne incognita and fungal diseases on cotton . Plant growth - promoting rhizobacteria (PGPR) applied to cotton were previously found to promote plant growth and reduce seedling disease . Studies were under taken to determine if these compounds were compatible with PGPR . In tests with 12 PGPR strains , vapor of citral inhibited in vitro growth of most strains , and vapor of furfural and benzaldehyde , with one exception , killed all but the Bacillus spp . tested . When 0 . 35 ml kg 1 soil of each compound were applied to the soil 9 - 10 days prior to planting the cotton cultivar Deltapine 51 , only furfural significantly reduced rhizosphere colonization across all strains from 4 . 70 colony - forming units (CFUs) / g of root to 4 . 42 CFUs / g root . In greenhouse studies , the low seed - surface pH (2 . 3) of commercial seed did not reduce root colonization , compared with colonization on roots from seed at pH 5 . 4 . There were no synergistic interactions between seed - surface pH and any of the compounds . Although previous research indicated that application of both furfural and benzaldehyde increased the proportion of Burkholderia spp . in the soil , there is no indication that they increased cotton root colonization by the B. cepacia strain tested . These results indicate PGPR can be combined with citral and benzaldehyde in integrated management systems and that the low seed - surface pH of acid - delinted cotton will not limit their application .

Keywords: AROMATIC COM POUNDS; BIOCONTROL; NEMATICIDE; RHIZOBACTERIA; SEED - SURFACE PH

Document Type: Research Article

DOI: http://dx.doi.org/10.1080/09583159730820

Publication date: September 1, 1997

More about this publication?
Related content

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more